skip to main content


Search for: All records

Creators/Authors contains: "Dekany, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract During the Zwicky Transient Facility (ZTF) Phase I operations, 78 hydrogen-poor superluminous supernovae (SLSNe-I) were discovered in less than 3 yr, constituting the largest sample from a single survey. This paper (Paper I) presents the data, including the optical/UV light curves and classification spectra, while Paper II in this series will focus on the detailed analysis of the light curves and modeling. Our photometry is primarily taken by ZTF in the g , r , and i bands, and with additional data from other ground-based facilities and Swift. The events of our sample cover a redshift range of z = 0.06 − 0.67, with a median and 1 σ error (16% and 84% percentiles) of z med = 0.265 − 0.135 + 0.143 . The peak luminosity covers −22.8 mag ≤ M g ,peak ≤ −19.8 mag, with a median value of − 21.48 − 0.61 + 1.13 mag. The light curves evolve slowly with a mean rest-frame rise time of t rise = 41.9 ± 17.8 days. The luminosity and timescale distributions suggest that low-luminosity SLSNe-I with a peak luminosity ∼−20 mag or extremely fast-rising events (<10 days) exist, but are rare. We confirm previous findings that slowly rising SLSNe-I also tend to fade slowly. The rest-frame color and temperature evolution show large scatters, suggesting that the SLSN-I population may have diverse spectral energy distributions. The peak rest-frame color shows a moderate correlation with the peak absolute magnitude, i.e., brighter SLSNe-I tend to have bluer colors. With optical and UV photometry, we construct the bolometric luminosity and derive a bolometric correction relation that is generally applicable for converting g , r -band photometry to the bolometric luminosity for SLSNe-I. 
    more » « less
  2. null (Ed.)
    ABSTRACT The early phases of the observed evolution of the supernovae (SNe) are expected to be dominated by the shock breakout and ‘flash’ ionization of the surrounding circumstellar medium. This material arises from the last stages of the evolution of the progenitor, such that photometry and spectroscopy of SNe at early times can place vital constraints on the latest and fastest evolutionary phases leading up to stellar death. These signatures are erased by the expansion of the ejecta within ∼5 d after explosion. Here we present the earliest constraints, to date, on the polarization of 10 transients discovered by the Zwicky Transient Facility (ZTF), between 2018 June and 2019 August. Rapid polarimetric follow-up was conducted using the Liverpool Telescope RINGO3 instrument, including three SNe observed within <1 d of detection by the ZTF. The limits on the polarization within the first 5 d of explosion, for all SN types, is generally $\lt 2{ per\ cent}$, implying early asymmetries are limited to axial ratios >0.65 (assuming an oblate spheroidal configuration). We also present polarimetric observations of the Type I Superluminous SN 2018bsz and Type II SN 2018hna, observed around and after maximum light. 
    more » « less
  3. null (Ed.)
    Context. Supernovae (SNe) Type Ibn are rapidly evolving and bright ( M R, peak  ∼ −19) transients interacting with He-rich circumstellar material (CSM). SN 2018bcc, detected by the ZTF shortly after explosion, provides the best constraints on the shape of the rising light curve (LC) of a fast Type Ibn. Aims. We used the high-quality data set of SN 2018bcc to study observational signatures of the class. Additionally, the powering mechanism of SN 2018bcc offers insights into the debated progenitor connection of Type Ibn SNe. Methods. We compared well-constrained LC properties obtained from empirical models with the literature. We fit the pseudo-bolometric LC with semi-analytical models powered by radioactive decay and CSM interaction. Finally, we modeled the line profiles and emissivity of the prominent He  I lines, in order to study the formation of P-Cygni profiles and to estimate CSM properties. Results. SN 2018bcc had a rise time to peak of the LC of 5.6 −0.1 +0.2 days in the restframe with a rising shape power-law index close to 2, and seems to be a typical rapidly evolving Type Ibn SN. The spectrum lacked signatures of SN-like ejecta and was dominated by over 15 He emission features at 20 days past peak, alongside Ca and Mg, all with V FWHM ∼ 2000 km s −1 . The luminous and rapidly evolving LC could be powered by CSM interaction but not by the decay of radioactive 56 Ni. Modeling of the He  I lines indicated a dense and optically thick CSM that can explain the P-Cygni profiles. Conclusions. Like other rapidly evolving Type Ibn SNe, SN 2018bcc is a luminous transient with a rapid rise to peak powered by shock interaction inside a dense and He-rich CSM. Its spectra do not support the existence of two Type Ibn spectral classes. We also note the remarkable observational match to pulsational pair instability SN models. 
    more » « less